Perbandingan Kinerja Algoritma Naïve Bayes dan C4.5 pada Sistem Web Klasifikasi Kelayakan PKH

Authors

  • Jupriyanto Jupriyanto Universitas Mandiri
  • Jamaludin Apandi Universitas Mandiri
  • Anderias Eko Wijaya Universitas Mandiri
  • Rian Hermawan Universitas Mandiri
  • Timbo Faritcan Parlaungan Siallagan Universitas Mandiri
  • Kodar Udoyono Universitas Mandiri
  • Hermansyah Nur Ahmad Universitas Mandiri
https://doi.org/10.47561/jtik.v18i1.287
This Abstract has been read 229 times

Abstract


This study discusses the development of a web-based classification system for determining the eligibility of recipients of the Family Hope Program (PKH), by comparing two data mining algorithms: C4.5 and Naïve Bayes. The dataset used includes various attributes relevant to eligibility assessment for social assistance. The C4.5 algorithm is employed to generate an interpretable decision tree, while the Naïve Bayes algorithm is used for probabilistic classification. The results show that Naïve Bayes achieved the highest accuracy at 98%, excelling in processing large datasets more efficiently. Meanwhile, C4.5 achieved an accuracy of 93.33% and offered better interpretability through its decision tree visualization. Both algorithms proved effective in classifying PKH eligibility and can be implemented in social assistance information systems to improve the accuracy and efficiency of the beneficiary selection process. This research concludes that the choice of algorithm should be based on system priorities—whether the focus is on processing speed or result interpretability.



Keywords: C4.5 algorithm, Naïve Bayes algorithm, Program Keluarga Harapan (PKH)

CITATIONS

PDF Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Jupriyanto Jupriyanto, Universitas Mandiri

Program Studi Sistem Informasi Fakultas Teknik Universitas Mandiri

Jamaludin Apandi, Universitas Mandiri

Program Studi Teknik Informatika Fakultas Teknik Universitas Mandiri

Anderias Eko Wijaya, Universitas Mandiri

Program Studi Teknik Informatika Fakultas Teknik Universitas Mandiri

Rian Hermawan, Universitas Mandiri

Program Studi Sistem Informasi Fakultas Teknik Universitas Mandiri

Timbo Faritcan Parlaungan Siallagan, Universitas Mandiri

Program Studi Teknik Komputer dan Jaringan Fakultas Teknik Universitas Mandiri

Kodar Udoyono, Universitas Mandiri

Program Studi Teknik Komputer dan Jaringan Fakultas Teknik Universitas Mandiri

Hermansyah Nur Ahmad, Universitas Mandiri

Program Studi Teknik Informatika Fakultas Teknik Universitas Mandiri

References

R. W. Sinaga and R. Winanjaya, “Analisis Data Mining Menentukan Penerima Bantuan Langsung Tunai pada Desa Pamatang Purba dengan Algoritma C4.5,” Jurnal Teknologi dan Sistem Informasi, vol. 3, no. 1, pp. 1–9, 2021.

G. Ramadhan et al., “Penerapan Data Mining Menggunakan Algoritma C4.5 Dalam Mengukur Tingkat Kepuasan Pasien BPJS,” Prosiding Seminar Nasional Riset dan Information Science (SENARIS), vol. 2, pp. 376–385, 2020.

L. Bachtiar and M. Mahradianur, “Analisis Data Mining Menggunakan Metode Algoritma C4.5 Menentukan Penerima Bantuan Langsung Tunai,” Jurnal Informatika, vol. 10, no. 1, pp. 1–9, 2023.

Muhamad, M., Windarto, A. P., & Suhada, S. (2019). Penerapan Algoritma C4.5 Pada Klasifikasi Potensi Siswa Drop Out. KOMIK (Konferensi Nasional Teknologi Informasi Dan Komputer), 3(1), 1–8. https://doi.org/10.30865/komik.v3i1.1688

N. Rahmadani, R. Risnawati, and M. D. Sena, “Penerapan Algoritma Naïve Bayes dalam Penentuan Kelayakan Penerima Bantuan Program Keluarga Harapan,” Jurnal Teknisi, vol. 3, no. 2, pp. 40–48, 2023.

R. S. Bhat and R. Bhat, “A Comparative Analysis of Machine Learning Algorithms for Classification Purpose,” Procedia Computer Science, vol. 199, pp. 372–380, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1877050922021159

S. Rasika, “Penerapan Algoritma C4.5 dalam Menentukan Faktor Kelayakan Penerima Bantuan Langsung Tunai (BLT-DD),” Jurnal Ilmiah Tunas Bangsa, vol. 1, no. 1, pp. 45–52, 2022.

J. R. Quinlan, “Improved Use of Continuous Attributes in C4.5,” Journal of Artificial Intelligence Research, vol. 4, pp. 77–90, 1996. [Online]. Available: https://jair.org/index.php/jair/article/view/10157

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed. Springer, 2009.

T. Wibowo, “Penerapan Data Mining Pemilihan Siswa Kelas Unggulan dengan Metode K-Means Clustering di SMP N 02 Tasikmadu,” Jurnal Ilmu Komputer, vol. 5, no. 1, pp. 27–36, 2018.

A. Chandra, “Penerapan Data Mining Menggunakan Pohon Keputusan,” Jurnal Ilmu Komputer, vol. 6, no. 3, pp. 1–6, 2017.

Downloads

Published

2025-04-01

How to Cite

[1]
J. Jupriyanto, “Perbandingan Kinerja Algoritma Naïve Bayes dan C4.5 pada Sistem Web Klasifikasi Kelayakan PKH”, JTIK, vol. 18, no. 1, pp. 50-64, Apr. 2025.

Issue

Section

Articles