Perbandingan Kinerja Algoritma Naïve Bayes dan C4.5 pada Sistem Web Klasifikasi Kelayakan PKH
This Abstract has been read 229 times
Abstract
This study discusses the development of a web-based classification system for determining the eligibility of recipients of the Family Hope Program (PKH), by comparing two data mining algorithms: C4.5 and Naïve Bayes. The dataset used includes various attributes relevant to eligibility assessment for social assistance. The C4.5 algorithm is employed to generate an interpretable decision tree, while the Naïve Bayes algorithm is used for probabilistic classification. The results show that Naïve Bayes achieved the highest accuracy at 98%, excelling in processing large datasets more efficiently. Meanwhile, C4.5 achieved an accuracy of 93.33% and offered better interpretability through its decision tree visualization. Both algorithms proved effective in classifying PKH eligibility and can be implemented in social assistance information systems to improve the accuracy and efficiency of the beneficiary selection process. This research concludes that the choice of algorithm should be based on system priorities—whether the focus is on processing speed or result interpretability.
Keywords: C4.5 algorithm, Naïve Bayes algorithm, Program Keluarga Harapan (PKH)
CITATIONS
PDF Downloads
Metrics
References
R. W. Sinaga and R. Winanjaya, “Analisis Data Mining Menentukan Penerima Bantuan Langsung Tunai pada Desa Pamatang Purba dengan Algoritma C4.5,” Jurnal Teknologi dan Sistem Informasi, vol. 3, no. 1, pp. 1–9, 2021.
G. Ramadhan et al., “Penerapan Data Mining Menggunakan Algoritma C4.5 Dalam Mengukur Tingkat Kepuasan Pasien BPJS,” Prosiding Seminar Nasional Riset dan Information Science (SENARIS), vol. 2, pp. 376–385, 2020.
L. Bachtiar and M. Mahradianur, “Analisis Data Mining Menggunakan Metode Algoritma C4.5 Menentukan Penerima Bantuan Langsung Tunai,” Jurnal Informatika, vol. 10, no. 1, pp. 1–9, 2023.
Muhamad, M., Windarto, A. P., & Suhada, S. (2019). Penerapan Algoritma C4.5 Pada Klasifikasi Potensi Siswa Drop Out. KOMIK (Konferensi Nasional Teknologi Informasi Dan Komputer), 3(1), 1–8. https://doi.org/10.30865/komik.v3i1.1688
N. Rahmadani, R. Risnawati, and M. D. Sena, “Penerapan Algoritma Naïve Bayes dalam Penentuan Kelayakan Penerima Bantuan Program Keluarga Harapan,” Jurnal Teknisi, vol. 3, no. 2, pp. 40–48, 2023.
R. S. Bhat and R. Bhat, “A Comparative Analysis of Machine Learning Algorithms for Classification Purpose,” Procedia Computer Science, vol. 199, pp. 372–380, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1877050922021159
S. Rasika, “Penerapan Algoritma C4.5 dalam Menentukan Faktor Kelayakan Penerima Bantuan Langsung Tunai (BLT-DD),” Jurnal Ilmiah Tunas Bangsa, vol. 1, no. 1, pp. 45–52, 2022.
J. R. Quinlan, “Improved Use of Continuous Attributes in C4.5,” Journal of Artificial Intelligence Research, vol. 4, pp. 77–90, 1996. [Online]. Available: https://jair.org/index.php/jair/article/view/10157
T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed. Springer, 2009.
T. Wibowo, “Penerapan Data Mining Pemilihan Siswa Kelas Unggulan dengan Metode K-Means Clustering di SMP N 02 Tasikmadu,” Jurnal Ilmu Komputer, vol. 5, no. 1, pp. 27–36, 2018.
A. Chandra, “Penerapan Data Mining Menggunakan Pohon Keputusan,” Jurnal Ilmu Komputer, vol. 6, no. 3, pp. 1–6, 2017.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jupriyanto, Anderias Eko Wijaya, Jamaludin Apandi, Rian Hermawan, Timbo Faritcan Parlaungan Siallagan, Kodar Udoyono, Hermansyah Nur Ahmad
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jupriyanto Jupriyanto
Universitas Mandiri




