Penerapan Simulasi AI Sistem Drone Ganda untuk Optimasi Lintasan pada Pemantauan Perkebunan

Authors

  • Tedi Sumardi Lab Cognitive Sciences, Instrumentation and Control (CIC), Program Studi Fisika, Universitas Mandiri
  • M. Agung Suhendra Lab Cognitive Sciences, Instrumentation and Control (CIC), Program Studi Fisika, Universitas Mandiri
  • Iqbal Robiyana Lab Cognitive Sciences, Instrumentation and Control (CIC), Program Studi Fisika, Universitas Mandiri
  • Anderias Eko Wijaya Universitas Mandiri
https://doi.org/10.47561/jtik.v18i1.286
This Abstract has been read 246 times

Abstract


Drone-based monitoring systems have emerged as an effective solution to improve the efficiency of large-scale agricultural land surveillance, particularly in oil palm plantations. This study proposes an artificial intelligence (AI)-based simulation using dual drones to map optimal and distributed flight paths. The simulation considers the random wind effect on trajectory accuracy using a grid-based waypoint approach across the plantation area. The results show that both drones successfully completed the land inspection mission with an average wind-induced deviation of ±0.14 meters, indicating system stability under dynamic environmental conditions. Drone 1 covered a total distance of 9244.10 meters, while Drone 2 covered 10602.47 meters. A 3D trajectory visualization illustrates that the path deviations remained controlled. This research provides a foundation for developing more adaptive and efficient autonomous drone systems in the context of smart farming.



Keywords: Drone simulation, Wind effect, Plantation monitoring, Smart farming

CITATIONS

PDF Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Tedi Sumardi, Lab Cognitive Sciences, Instrumentation and Control (CIC), Program Studi Fisika, Universitas Mandiri

Program Studi Fisika Fakultas Teknik Universitas Mandiri

M. Agung Suhendra, Lab Cognitive Sciences, Instrumentation and Control (CIC), Program Studi Fisika, Universitas Mandiri

Program Studi Fisika Fakultas Teknik Universitas Mandiri

Iqbal Robiyana, Lab Cognitive Sciences, Instrumentation and Control (CIC), Program Studi Fisika, Universitas Mandiri

Program Studi Fisika Fakultas Teknik Universitas Mandiri

Anderias Eko Wijaya, Universitas Mandiri

Program Studi Teknik Informatika Fakultas Teknik Universitas Mandiri

References

A. Tokekar, J. Vander Hook, D. Mulla, and V. Isler, “Sensor planning for a symbiotic UAV and UGV system for precision agriculture,” IEEE Trans. Robot., vol. 32, no. 6, pp. 1498–1511, Dec. 2016.

R. B. R. Warasthe, A. D. Kulkarni, and V. L. Uplane, “Autonomous drone navigation in GPS-denied environment using artificial intelligence,” in Proc. 2021 Int. Conf. Emerg. Smart Comput. Inform. (ESCI), Pune, India, 2021, pp. 46–50.

Y. Huang et al., “Deep learning-based path planning for agricultural UAV,” IEEE Access, vol. 8, pp. 113944–113956, 2020.

P. Rudol and P. Doherty, “Human body detection and geolocalization for UAV search and rescue missions using color and thermal imagery,” in Proc. 2008 IEEE Aerosp. Conf., Big Sky, MT, USA, 2008, pp. 1–8.

C. N. Eze, S. Zhang, and E. Liu, “Autonomous path planning for UAVs using reinforcement learning and evolutionary computation,” IEEE Access, vol. 7, pp. 180246–180260, 2019.

A. R. Mosteo et al., “Multi-robot exploration under the priority target model,” IEEE Trans. Robot., vol. 33, no. 4, pp. 1048–1062, Aug. 2017.

S. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge Univ. Press, 2006.

R. K. Gupta, Y. H. Zweiri, and L. Seneviratne, “Modeling wind disturbance for UAVs in urban environments,” in Proc. 2013 IEEE Int. Conf. Syst., Man, Cybern., Manchester, U.K., 2013, pp. 3887–3892.

A. Breitenmoser, M. Schwager, J.-C. Metzger, R. Siegwart, and D. Rus, “Voronoi coverage of non-convex environments with a group of networked robots,” in Proc. 2010 IEEE Int. Conf. Robot. Autom., Anchorage, AK, USA, 2010, pp. 4982–4989.

D. Popescu, M. Ichim, and D. S. Gorunescu, “Using simulations in multi-agent systems for aerial drone applications,” IEEE Access, vol. 9, pp. 77692–77703, 2021.

A. Rakotomamonjy, V. Guigue, A. Malerba, and M. Clerc, “Evaluating the use of SVM and HMM classifiers for the inference of hand movements from EEG signals,” Neurocomputing, vol. 71, no. 10–12, pp. 2482–2495, 2008.

Downloads

Published

2025-04-01

How to Cite

[1]
T. Sumardi, M. A. Suhendra, I. Robiyana, and A. E. Wijaya, “Penerapan Simulasi AI Sistem Drone Ganda untuk Optimasi Lintasan pada Pemantauan Perkebunan”, JTIK, vol. 18, no. 1, pp. 27-38, Apr. 2025.

Issue

Section

Articles