MACHINE LEARNING TINGKAT KEMATANGAN BUAH NANAS SUBANG BERBASIS INTERNET of THINGS MENGGUNAKAN METODE K-MEANS PADA PLATFORM THINGSPEAK

MACHINE LEARNING TINGKAT KEMATANGAN BUAH NANAS SUBANG BERBASIS INTERNET of THINGS MENGGUNAKAN METODE K-MEANS PADA PLATFORM THINGSPEAK

Authors

  • Timbo Faritcan Parlaungan S. STMIK Subang
  • Fajar Fajar Universitas Mandiri
https://doi.org/10.47561/a.v14i2.217
This Abstract has been read 12 times

Abstract

Identification of pineapples carried out by farmers is still done manually, so the importance of accuracy in determining the level of maturity of pineapples is needed for farmers. This is because many farmers do not know how ripe the pineapples they plant are. Therefore, pineapple farmers can only make visual observations or directly on pineapples which will be classified according to the level of maturity, of course this process has many obstacles, this is because human nature itself has weaknesses which ultimately lead to a lack of quality in sorting between ripe and immature fruit, therefore a tool and system for the maturity level of pineapple is made using the TCS3200 color sensor and loadcell sensor, besides that this tool is equipped with a system or website using the K-Means algorithm so that later farmers can see the number of fruits raw pineapples and ripe pineapples that have been grouped through a website that is made specifically to classify pineapples using the K-Means method based on their level of maturity, it will certainly be very helpful for pineapple farmers. Keywords: Buah Nanas, K-Means, Loadcell, TCS3200, Thingspeak

CITATIONS

PDF Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Afrianda (2020). Mengelompokan buah nanas menggunakan metode K-Means berdasarkan tingkat kematangannya,hal itu tentunya akan sangat membantu para petani buah nanas

Bayu Fharadila student tunri.ac.id (2019). Identifikasi Kematangan Buah Nanas Menggunakan Metode Jaringan Syaraf Tiruan

Sulaiman, O. K., & Widarma, A. (2017). Sistem Internet of Things (Iot) Berbasis Cloud Computing Dalam Campus Area Network. https://doi.org/10.31227/osf.io/b6m79

Son, M. S. (2018). Pengembangan Mikrokontroler Sebagai Remote Control Berbasis Android. Jurnal Teknik Informatika, 11(1), 67–74. https://doi.org/10.15408/jti.v11i1.6293

Junaidi, A. (2015). Internet Of Things, Sejarah, Teknologi Dan Penerapannya?: Review. Jurnal Ilmiah Teknologi Informasi, 1(3), 62–66.

Andayani, S. (2007). Formation of clusters in Knowledge Discovery in Databases by Algorithm K-Means. SEMNAS Matematika Dan Pendidikan Matematika 2007.

Brasileira de Geografia Física, 11(9), 141 156.http: //biblioteca.ibge.gov.br/visualizacao/monografias/GEBIS - RJ/RBG/RBG 1995 v57_n1.pdf%0Ahttps://periodicos.ufpe.br/revistas/rbgfe/article/view/234295

Rosmaina, Almaktsur, M. A., Elfianis, R., Oksana, & Zulfahmi. (2019). Morphology and fruit quality characters of Pineapple (Ananas comosus L. Merr) cv. Queen on three sites planting: freshwater peat, brackish peat and alluvial soil. IOP Conference Series: Earth and Environmental Science, 391(1). https://doi.org/10.1088/1755-1315/391/1/01206

Dharwiyanti, S. (2003). Pengantar Unified Modeling Language (UML). Diambil kembali dari RomiSatriaWahono.net: http://romisatriawahono.net.

Sukirno. (2013). Peningkatan Kemampuan Teknologi Olahan Pangan Berbasis Sumber Daya Lokal Buah Nanas ( Ananas Comosus L Merr ) Di Kabupaten Subang. Seminar Nasional IENACO, 2337–4349, 1–6.

Published

2022-04-12

How to Cite

[1]
T. F. Parlaungan S. and F. Fajar, “MACHINE LEARNING TINGKAT KEMATANGAN BUAH NANAS SUBANG BERBASIS INTERNET of THINGS MENGGUNAKAN METODE K-MEANS PADA PLATFORM THINGSPEAK: MACHINE LEARNING TINGKAT KEMATANGAN BUAH NANAS SUBANG BERBASIS INTERNET of THINGS MENGGUNAKAN METODE K-MEANS PADA PLATFORM THINGSPEAK”, JTIK, vol. 14, no. 2, pp. 20-30, Apr. 2022.

Issue

Section

Articles